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A general, highly efficient synthesis of arylated benzenes from simple stitching of a-oxo-ketene-S,S-ace-
tals and functionalized deoxybenzoins via a ‘lactone intermediate’ is described. This procedure offers easy
access to highly functionalized arylated benzenes containing sterically demanding groups in good to
excellent yields. The advantage of the procedure lies in the fabrication of arylated benzenes with desired
conformational flexibility along the molecular axis at room temperature and in a transition metal-free
environment through easily accessible precursors.

� 2008 Elsevier Ltd. All rights reserved.
Over the last few decades, polyarylated propeller systems have
received a great deal of attention owing to their unique photophys-
ical and optical properties associated with them.1 These propeller
systems exhibit a geared rotation about a central, planar unit such
as a phenyl ring, which can perform as molecular rotors,1 and thus
have shown great relevance to modern carbon-nanotechnology.2

The inherent rotational isomerism associated with sterically
crowded arylated benzenes has further enhanced the importance
of these propellers with a desired degree of rotational freedom
for the development of new chiral ligands or auxiliaries for asym-
metric synthesis.3 Recently, a current interest has been focused to
fabricate useful quateraryl or quinquearyl building blocks with
electron-donor and -acceptor groups for preparing advanced elec-
troluminescent materials such as organic light emitting diodes.4

Highly arylated benzenes are difficult to be synthesized by pal-
ladium-catalyzed iterative aryl–aryl cross-coupling between the
electrophilic aromatic polyhalides and organometallic species.5

Although there are numerous synthetic strategies for di- and/or tri-
arylated benzenes,6 methods for polyarylated benzene such as
quater- or quinquephenyls remain sparse. Limited procedures are
known for the synthesis of such arylated benzene, in which one
of the phenyl rings is tagged with three or more aromatic rings
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in a juxtaposed manner. The most common and popular approach
for the introduction of polyaryl groups onto the benzene skeleton
is based on the [4+2]-cycloaddition of arylated cyclopentadienones
or 2H-pyran-2-ones with functionalized alkynes at elevated tem-
peratures.7 The notable examples of various types of cycloaddition
processes involve copper-mediated cycloaddition of zirconacyclo-
pentadienes with fumaronitrile,8 through flash vacuum pyrolysis
of cyclobutane-fused sulfolanes,9 reaction of tetraphenylcyclopen-
tadienones either with allyl phenyl sulfone10 or with 7-oxanorbor-
nadienes11 or with acrylonitriles12 at high temperature. Some of
these mentioned reactions, however, are relatively limited in scope
particularly towards the tolerance of electron-donor or -acceptor
substituents or involve high reaction temperature and/or forma-
tion of undesirable side products.

The wide-ranging applications and high demand of arylated
benzenes and paucity of mild synthetic methodologies prompted
us to develop a simple, general and efficient route that could offer
flexibility of substituent variations on benzene scaffold. In this Let-
ter, we report a highly convenient and commercially viable syn-
thetic route for arylated benzenes through simple stitching of a-
oxo-ketene-S,S-acetals and deoxybenzoin in just two steps via
six-membered lactone intermediate. The versatility and generality
of the procedure lies in the creation of a central benzene ring with
optionally functionalized tetraaryl moieties in a controlled fashion
at room temperature.

During our recent studies13 on the chemistry of arylated 2H-
pyran-2-ones, we observed that the nature of an electron-with-
drawing group such as nitrile or ester group at position 3 of 2H-
pyran-2-one dictates the Michael addition of a conjugate base of
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deoxybenzoin onto the lactone either at position 4 and/or position
6 of 5,6-diaryl-2H-pyran-2-ones (Scheme 1). The reaction of 3-cy-
ano-5,6-diaryl-2H-pyran-2-ones (1, X = CN) with functionalized
deoxybenzoins (2) led to the formation of 4-(2-oxo-1,2-diaryleth-
yl)-5,6-diaryl-pyran-2-ones (3) through an unusual decyanation
as a major product and tetraarylbenzene (4) as a minor product.
A characteristic feature of 3-cyano-5,6-diaryl-2H-pyran-2-ones 1
revealed that C4 and C6 positions are susceptible to nucleophilic
attack in a competitive manner depending upon the nature of
nucleophile used. In order to prepare donor–acceptor arylated ben-
zene exclusively, the change of electron density at position 4 of 2H-
pyran-2-one 1 was desirable.

Our aim to prepare 5,6-diaryl-2H-pyran-2-ones 8a–d was
achieved by preparing a key intermediate a-cyano-ketene-S,S-ace-
tal 6 from easily accessible precursors methyl cyanoacetate, carbon
disulfide and methyl iodide through modified procedure.4e,14 The
a-cyano-ketene-S,S-acetal 6 on Michael addition–cyclization reac-
tion with various substituted deoxybenzoins15 7a–d under alkaline
O
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conditions furnished 5,6-diaryl-2H-pyran-2-ones4e,13 8a–d in
excellent yields (Scheme 2). The 5,6-diaryllactones 8a–d generated
from a-cyano-ketene-S,S-acetal 6 possess a methylsulfanyl group,
which may be replaced by a secondary amine. In general, when a
secondary amine reacts with 4-methylsulfanyl-2H-pyran-2-ones
in the presence of methanol at reflux temperature, the correspond-
ing 4-amino-2H-pyran-2-ones are formed very easily with
excellent yields. Accordingly when we performed a reaction of
3-cyano-5,6-diaryl-4-methylsulfanyl-2H-pyran-2-ones and a
secondary amine such as dimethyl amine or piperidine under sim-
ilar conditions, to our surprise, no desired lactone 10 was obtained
(Scheme 2).

Interestingly, when we tried reaction of 8a–d with a primary al-
kyl amine such as methyl amine or isopropyl amine, we observed a
clean reaction leading to the formation of 5,6-diaryl-4-alkylamino-
2-oxo-2H-pyran-3-carbonitriles 9a–e in good yield.16 Further, 5,6-
diaryl-4-alkylamino-2-oxo-2H-pyran-3-carbonitriles 9a–e were
methylated to 5,6-diaryl-4-(N-alkyl,N-methylamino)-2-oxo-2H-
pyran-3-carbonitriles 10a–e by CH3I in the presence of cesium car-
bonate in dry acetone under reflux conditions.17

Our approach to prepare 60-(N-alkyl,N-methylamino)-[1,10;20,
10 0;30,10 0 0;4’,10 0 0 0]quinquephenyl-50-carbonitriles 11a–i is based on
the ring transformation of 5,6-diaryl-4-(N-alkyl,N-methylamino)-
2-oxo-2H-pyran-3-carbonitriles 10a–e using functionalized deoxy-
benzoins 7a–d as a carbanion source. Unfortunately, reaction of
10a with a deoxybenzoin containing an electron-withdrawing ni-
tro group (7, R5 = NO2, R6 = OMe) resulted in a mixture of decom-
posed products. The 2H-pyran-2-ones 10a–e have three
electrophilic centres; C2, C4 and C6 in which the position C6 is
highly susceptible to nucleophilic attack due to the extended con-
jugation and the presence of an electron-withdrawing substituent
at position 3 of the pyranone ring. Thus, stirring an equimolar mix-
ture of 5,6-diaryl-4-(N-alkyl,N-methylamino)-2-oxo-2H-pyran-3-
carbonitriles 10a–e and functionalized deoxybenzoins 7a–d in
the presence of KOH in dry DMF for 2–4 h at room temperature
afforded 60-(N-alkyl,N-methylamino)-[1,10;20,10 0;30,10 0 0;40,10 0 0 0]-quin-
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quephenyl-50-carbonitriles 11a–i in 56–92% yields (Scheme 3). The
reaction was monitored by TLC, which showed an intense blue spot
when exposed to short-wave UV radiation at 254 nm. After com-
pletion, the reaction mixture was poured into ice water and neu-
tralized with dilute HCl. The precipitate was filtered, dried over
CaCl2 and the crude product thus obtained was purified by neutral
alumina column chromatography using chloroform/hexane (1:4)
as the eluent. All the compounds were characterized by the spec-
troscopic analysis.18

The plausible reaction mechanism for the formation of donor–
acceptor arylated benzenes 11a–i from 2H-pyran-2-ones 10a–e
is depicted in Scheme 3. The transformation of 5,6-diaryl-2-oxo-
2H-pyran-3-carbonitriles 10a–e into quinquephenyls 11a–i is
possibly initiated by Michael addition of conjugate base of deoxy-
benzoin 7 at position C6 of lactone 10, followed by intramolecular
cyclization involving the carbonyl functionality of 7 and C3 of the
pyranone ring followed by elimination of carbon dioxide and water
to yield quinquephenyls 11a–i in excellent yields.

In summary, we have demonstrated highly convenient ring
transformation approach to access functionally congested arylated
benzenes at room temperature in excellent yields. This protocol of-
fers in a transition metal-free environment, the flexibility of intro-
ducing the electron-donor or -acceptor groups in the molecular
architecture of arylated benzene scaffolds.
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Compound 11f: White solid; mp 138–140 �C; 1H NMR (300 MHz, CDCl3) d 2.60
(s, 6H, NMe2), 3.56 (s, 3H, OMe), 3.57 (s, 3H, OMe), 3.72 (s, 3H, OMe), 6.32–6.44
(m, 4H, ArH), 6.50–6.62 (m, 4H, ArH), 6.70 (d, J = 8.6 Hz, 2H, ArH), 6.90–6.98
(m, 2H, ArH), 7.00–7.19 (m, 5H, ArH); IR (KBr) 2217 cm�1 (CN); MS (ESI) 541
(M++1); HRMS calcd for C36H32N2O3: 540.2413, found: 540.2400. Compound
11g: White solid; mp 214–216 �C; 1H NMR (200 MHz, CDCl3) d 2.65 (s, 6H,
NMe2), 3.62 (s, 6H, 2OMe), 3.76 (s, 6H, 2OMe), 6.41 (d, J = 8.6 Hz, 4H, ArH),
6.54–6.64 (m, 4H, ArH), 6.66–6.78 (m, 4H, ArH), 6.88 (d, J = 8.6 Hz, 2H, ArH),
7.07 (d, J = 8.6 Hz, 2H, ArH); IR (KBr) 2213 cm�1 (CN); MS (ESI) 571 (M++1).
Compound 11h: White solid; mp 140–142 �C; 1H NMR (300 MHz, CDCl3) d 2.68
(s, 6H, NMe2), 3.46 (s, 3H, OMe), 3.61 (s, 3H, OMe), 5.96 (d, J = 2.2 Hz, 1H, ArH),
6.05 (dd, J = 8.4, 2.2 Hz, 1H, ArH), 6.47 (d, J = 8.4 Hz, 1H, ArH), 6.65–6.68 (m, 1H,
ArH), 6.78–6.88 (m, 4H, ArH), 6.89–7.05 (m, 2H, ArH), 7.11–7.22 (m, 7H, ArH);
IR (KBr) 2214 cm�1 (CN); MS (ESI) 545 (M++1). Compound 11i: White solid; mp
136–138 �C; 1H NMR (300 MHz, CDCl3) d 0.82 (d, J = 6.5 Hz, 6H, 2Me), 2.86 (s,
3H, NMe), 3.14–3.22 (m, 1H, CH), 3.60 (s, 3H, OMe), 3.76 (s, 3H, OMe), 6.39 (d,
J = 8.8 Hz, 2H, ArH), 6.62 (d, J = 8.5 Hz, 2H, ArH), 6.67–6.71 (m, 2H, ArH), 6.75
(d, J = 8.8 Hz, 2H, ArH), 6.80–6.88 (m, 3H, ArH), 6.96–7.02 (m, 2H, ArH), 7.04–
7.15 (m, 5H, ArH); IR (KBr) 2218 cm�1 (CN); MS (ESI) 539 (M++1).


